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Zero and negative entrainment in turbulent shear flow 
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In  certain accelerated flows the entrainment in the boundary layer, as normally 
defined, may be either zero or negative; on the other hand, there is no reason to 
suppose, on physical grounds, that the spread of mean or fluctuating vorticity 
should cease or become negative in such flows. This paradox is resolved in the 
present paper. It is also shown that in the equilibrium turbulent sink-flow 
boundary layer, where the entrainment as normally defined is zero, the reduced 
advection along streamlines in the outer part of the layer comes about mainly 
through increased dissipation: there is no reason to assume any radical change in 
the turbulence structure. 

1. Introduction 
If we consider a turbulent shear flow, such as a turbulent jet or boundary layer, 

it seems reasonable to suppose that the turbulence should spread with time (i.e. 
with distance downstream) into the surrounding fluid, and that mean as well as 
fluctuating vorticity, should be transferred to the surrounding fluid in this way. 
Even if the turbulence decays with distance downstream, we should expect the 
propagation of mean vorticity to proceed by the normal action of viscosity. 

Prom this point of view it would appear that the entrainment should always be 
positive, i.e. that the mass flow ‘infected’ with mean vorticity should continually 
increase with distance downstream, in either laminar or turbulent flow. 

Nevertheless, there are flows where this is apparently not the case. In  particular, 
i t  is well known that if a turbulent boundary layer is subjected to a sufficiently 
strong and sustained favourable pressure gradient it will revert to the laminar 
form and in the process the mass flow in the boundary layer may actually decrease. 
Whilst it is not difficult to accept the decay of turbulence in this particular 
situation, it is less easy to see how the amount of fluid infected with mean 
vorticity (and hence possessing velocity defect) can decrease, since vorticity of 
appropriate sign is continually being generated at the wall and diffused outward. 
Again, in the special case of the laminar or turbulent equilibrium boundary layer 
on the plane walls of a converging channel with a line sink at the apex (sink flow: 
see inset to figure l),  it  appears inescapable that the entrainment should be zero. 
From continuity the Reynolds number of the flow is the same at all points 
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along the channel and similarity demands that all streamlines should be radial 
lines; thus the proportion of the total mass flow contained within the boundary 
layer should remain constant. We therefore have the situation where a 
shear flow is apparently neither decaying nor encroaching upon the external 
irrotational flow. 
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FIGURE 1. Approximate contours of constant vorticity in two-dimensional laminar sink 
flow: flow from right to left. -5  = (aU/@)  (l/Uo) (v /Uol)*;  U0 = reference velocity; 
1 = reference length. 

I n  what follows we show that, in fact, such encroachment does occur, and that, 
although the rate a t  which it proceeds is small, the eddy structure in the case of a 
turbulent boundary layer in sink flow does not differ radically from that in a 
normal turbulent boundary layer. We also show that in the case of turbulent 
boundary layers reverting to the laminar form there is no basic conflict between 
the negative entrainment that would normally be said to occur and the continuous 
increase in the amount of fluid infected with mean vorticity that physical con- 
siderations would appear to demand. 

2. The equilibrium boundary layer in sink flow 
2.1. General considerations 

It is instructive to consider first the solution for laminar boundary-layer flow in 
this situation, given in Rosenhead (1963, page 236). Figure 1 shows contours of 
constant 6, the vorticity made dimensionless by a constant (arbitrary) reference 
velocity U,, and a constant reference length 1 defined as the distance from the 
sink at  which U, = U,. It will be seen that these contours cross the streamlines 
(which are also lines of constant U/U,) at an appreciable angle: therefore the mass 
flow infected with mean vorticity greater than some reference value, - 6 = 0.01, 
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say, continually increases with distance downstream, in agreement with the 
intuitive ideas of positive entrainment expressed at the beginning of 3 1. 

However, if the vorticity is made dimensionless with respect to local scales (say 
the local free-stream velocity Ul and the boundary-layer thickness S) then the 
corresponding contours of - (S/Ul) aU/ay coincide with the streamlines, and the 
mass flow infected with a value of - (S/Ul) aU/ay greater than some reference 
value remains constant, in agreement with the requirements of self-preservation. 

It will be seen that there is no conflict between the continually increasing 
proportion of the flow infected with mean vorticity greater than some constant 
reference value and the constant proportion of the flow that comprises the 
boundary layer as normally defined. Similarly, it is to be expected that, in the 
equilibrium turbulent boundary layer in sink flow, the fluctuating vorticity will 
affect an ever-increasing proportion of the flow, although the mass flow confined 
within a particular value of - (S/Ul) aU/ay or of (S/U,)J(mean square vorticity) 
will remain constant. 

2.2. Tzcrbulent energy balance 

Although the foregoing discussion removes a major difficulty in showing that 
nominally zero entrainment is not incompatible with the outward spread of mean 
and fluctuating vorticity, it remains true that the rate at  which fluctuating 
vorticity is propagated into the surrounding fluid in the turbulent sink flow is 
very much less than in a more typical turbulent boundary layer, although the 
turbulence level over most of the layer is not very different. This prompts the 
question whether the diffusion of turbulent energy towards the edge of the layer 
is qualitatively different in highly accelerated flows. 

Bradshaw, Ferriss & Atwell (1967) presented a method of calculating turbulent 
boundary development by the use of the turbulent energy equation, 

- rau a F  -1 
( ax say) P aY aY P 

a u-+ v- ?&---- +- -+*q% +€ = 0, 

where the terms represent respectively advection, ( - 1) x production, loss by 
diffusion and dissipation; here q2 = u2 + w 2  + w2. The method uses certain assump- 
tions about the universality of the turbulence structure, specifically about 
relations between the shear stress T and other properties of the turbulence, and it 
is therefore interesting to see whether it can deal satisfactorily with the present 
flow. The results of a calculation are shown in figure 2: the Reynolds number 
should be constant and the slight increase occurs solely because the initial 
velocity and shear stress profiles were taken from an experiment (Herring & 
Norbury 1967) where it increased very significantly. The calculated profiles, 
which are not shown here, agree well with the results of Launder & Stinchcornbe 
(1967) at the highest Reynolds number of their experiments. The assumption of 
universal relations for the turbulence structure is evidently satisfactory and we 
do not have to postulate any unusual behaviour of the turbulence to explain the 
very low rate at  which fluctuating vorticity is propagated outwards in this case. 

Figure 3(a) shows the calculated turbulent energy balance for the same 
boundary layer, near the outer edge of the flow: the results show up some 
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finite-difference errors in the computer program but are adequate for the present 
purpose. Figures 3 ( b )  and 3 (c) show the calculatedenergy balancesfor a boundary 
layer in zero pressure gradient and a strongly retarded self-preserving boundary 
layer respectively: the experimental energy balances for these cases are given by 
Bradshaw (1967) and agree qualitatively with those shown here, although the 
experimental results are incomplete and not very accurate. 
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FIGURE 2. Near-constancy of calculated Reynolds number in turbulent sink flow. z positive 
downstream, x = xo at apex, U,K l/(zo-z). Calculation started at  (xo- %)/(initial 6 )  = 105. 

In figures 3 (b )  and 3 (c), and in other boundary layers where the entrainment, 
however defined, is unequivocally positive, the diffusion of turbulent energy 
towards the outer edge supplies the advection or rate of increase of turbulent 
energy along a streamline (which may normally be taken as a measure of the 
entrainment) and both production and dissipation are negligible near the outer 
edge. However, we see from figure 3(a) that near the edge of the sink flow 
advection is very much smaller than the dissipation, so that the latter absorbs 
nearly all the diffusion. The behaviour of the diffusion itself does not appear to be 
qualitatively different from that in an ordinary flow. 

The values of (advection)/(dissipation) shown in figure 3 depend on the details 
of the calculation method but the qualitative result may be confirmed by 
inserting plausible magnitudes in a simple analysis. In the sink flow, 

u = V,f ( Y / ( ~ - X , , ) )  
- 

and the turbulent energy ipp2 is pU:g(y/(x-x,))  with xo > x. The same expres- 
sions, with different f and g and with x,, < x, are an adequate approximation for 
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the present purpose in a boundary layer in zero pressure gradient if xo is chosen 
to match the local rate of growth of boundary-layer thickness 6. In both flows 
6/ (x  - x,,) is numerically of order 0.01, 

The advection is 
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FIGURE 3. For legend see p. 391. 
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Since @/ax = - (y/(x - xo)) @lay if Ul = constant, the advectionnear the edge of 
the boundary layer in zero pressure gradient, where 7J fi U, and V -h V,, becomes 

Y a -  a -  -Go Ul) ( +q2) which is of order - 0.0 1 U - ( 4 q 2 ) .  
aY 

Now - near the edge of any boundary layer, 42 decreases very rapidly with 
y, q 2 a  Y - ~  say, where n is very large: also the turbulent energy in the rotational 
part of the flow is a roughly constant multiple, &al say, of the shear st'ress, 
a, being roughly 0-15. Therefore the advection is of order 0.005nrU1/pa,6 near 
y = 6. According to the assumptions in the calculation method of Bradshaw 
et al. (1967) the dissipation near y = 6 is about (~/p)%/0.048 and, accepting this 
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FIGURE 3. For legend see facing page. 



1 . o ~  10-3 

0.5 x 10-3 

0 

-0.5 x 10-3. 

- 1.0 x 10-3 

Entrainment in turbulent shear flow 391 
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FIGURE 3. Calculated energy balance near edge of boundary layer: (a) sink flow between 
converging planes; (b)  zero pressure gradient; (c) strongly retarded flow U, a ~ - 0 ' 2 6 6 .  

0, advection; x , dissipation; A, diffusion; 0, production. Quantities made dimensionless 
with U, and 8. 
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value for the purposes of the present order of magnitude argument, we get 
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advection Ul 2~ 10-4- 
dissipation aI(T1PP n’ 

near the edge of a boundary layer in zero pressure gradient. In  the sink flow 
q2/Uq is constant along a given streamline so that does not appear in the 
advection and, assuming that the same formula for dissipation applies in the 
postulated absence of large changes of turbulence structure, we get 

- 

advection 4 10-4- Ul 
dissipation a l ( T / P ) t  ’ 

which is much smaller, since n 9 1 and r/pU2, is larger than in zero pressure 
gradient in the outermost part of the boundary layer (see figure 4). 
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FIGURE 4. Calculated shear stress profiles near edge of boundary layer. 

The calculations and the analysis therefore show that, in the case of sink flow, 
the reduction of advection comes about through the increase of dissipation 
rather than the reduction of diffusion, and no radical change in turbulence 
structure is required to account for this behaviour. In  particular there would 
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seem to be no justification for the hypothesis that large eddies are absent from 
this flow, although they are undoubtedly weaker than in a boundary layer in 
zero pressure gradient, as evidenced by the low level of shear stress over most of 
the layer. 

3. More highly accelerated flows 
Applying here the same general considerations as were applied in the case of 

sink flow, we may again reasonably assume that both mean and fluctuating 
vorticity are continually being propagated into the surrounding fluid, so that, 
on the absolute level, an increasing quantity of the flow is being affected, and the 
entrainment in this sense remains positive. 

On the relative level, however, where the magnitudes of mean and fluctuating 
vorticity are made non-dimensional by the use of local quantities, we may now 
expect that, instead of remaining constant as in the case of sink flow, the quantity 
flow beneath contours of constant vorticity made non-dimensional in this way 
will actually decrease in the streamwise direction. Thus the quantity flow in the 
boundary layer, as normally defined, will have decreased and we may reasonably 
refer to negative entrainment in this situation, while recognizing that this comes 
about not through any reduction in the quantity of fluid infected with mean or 
fluctuating vorticity, but through our ceasing to regard as part of the boundary 
layer any fluid in which the level of these quantities has fallen sufficiently low. 

We are justified in assuming the decay of turbulence, in relative terms, in 
turbulent flows that are more highly accelerated than the sink-flow boundary 
layer, since in the latter case the turbulence is only just self-sustaining (again in 
relative terms: the actual turbulent intensity along streamlines must in fact 
increase as UZ,). Whether the decay proceeds sufficiently far for the boundary 
layer to revert effectively to the laminar condition will depend upon the initial 
boundary-layer Reynolds number, the strength of the favourable pressure 
gradient and the distance over which it is applied. 

The decay of turbulence will still be described by the turbulent energy equation, 
but, except in the initial stages of the decay process, we should not be justified in 
assuming the universal relations used in the calculation method that was 
satisfactorily applied to the sink-flow boundary layer: also, viscous terms 
neglected in the above form of the equation will become important. There is no 
conflict between the decay of turbulence and its continuing spread into the 
surroundiag fluid; contours of constant turbulence intensity expressed in relative 
terms will certainly contract and in absolute terms may do so, but even with the 
effective disappearance of small scale turbulence the larger scales will continue 
to infect the surrounding fluid until they too effectively disappear, leaving behind 
only a mean velocity defect that may be quite insignificant for practical purposes. 

An overall picture of the changes occurring in the highly accelerated layer may 
be obtained by making rather gross simplifying assumptions. Let us first assume 
that the accelerations are sufficiently rapid for Bernoulli’s equation to be applied 
along streamlines in the outer part of the layer. From this it can be simply shown 
that the non-dimensional velocity defect A UlU, should decrease approximately 
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as IlU;. If we furthex assume that the absolute turbulent intensity Fremains 
constant along streamlines,? then it follows that ?/UZ, should also decrease as 
l /Uf .  It is therefore not surprising that, in wind-tunnel contractions and the like, 
where U, is increased by a factor of 5 or 10, initially quite large velocity defects 
and high turbulence levels should be rendered effectively negligible compared 
with the vorticity which has been newly created and diffused out to only a short 
distance from the wall. 

4. Conclusions 
Toresolve conceptual diffculties associated with the terms ‘zero ’ and ‘negative ’ 

entrainment it is only necessary to observe the distinction between the use of the 
word entrainment to mean the spread of velocity defect or mean vorticity into 
the surrounding fluid and its use as representing the rate of increase of mass flow 
in the ‘boundary layer’ as normally defined: used in the first sense, the entrain- 
ment can never be other than positive, though it may be very small; used in the 
second sense it may well be negative in highly accelerated flows. The presence or 
absence of turbulence, or its progressive decay, would not appear to affect these 
basic considerations. 

From the fact that a calculation method which makes use of the turbulent 
energy equation and relationships derived from normal turbulent boundary 
layers has been successfully applied to the calculation of the sink-flow boundary 
layer, it  is concluded that the turbulence structure of this layer is not qualitatively 
different from that of a normal boundary layer; the reduced advection is seen to 
result from an increase in dissipation rather than a reduction in diffusion. The 
utility of the calculation method in more highly accelerated flows is probably 
restricted to the initial stages of the decay of turbulence. 
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